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In this paper, we obtain a better estimate for the norm of inverses of Euclidean
distance matrices of low dimensions. © 1992 Academic Press, Inc.

1. INTRODUCTION

We work in the Euclidean space [Rd, the dimension d being fixed. Let X!,

X2' ••• , X n be n distinct points (called nodes) in R d
, and let 11·11 be the

Euclidean norm on [Rd. Schoenberg [8J proved that the n x n distance
matrix A=(llxj-xkll) has exactly 1 positive eigenvalue and (n-l)
negative eigenvalues. As a consequence of Schoenberg's result, the
following interpolation problem is soluble: Given arbitrary data {b I'

b2 , ... , bn } on the node set {x b X2, ... , X n }, find a unique function f in the
linear span of the n functions Ilx-xll, Ilx-x211, ..., Ilx-x"ll, such that

(1 ~j~ n).

This interpolation method is a natural generalization of the piecewise linear
interpolation on the real line, and is an important special case of the radial
basis function interpolation. See the review papers by Dyn [3 J and Powell
[6].

In implementing the interpolation scheme, it is important to have an
estimate for the norm of A -I. Here we look at A -I as a linear operator
from [Rn to [Rn, and use the matrix norm subordinate to the Euclidean
norm on [Rn. We also denote the matrix norm by 11·11, as no confusion is
likely to occur. Let AI' A2 , ... , An be all the eigenvalues of A, and let
A= min {IAll, IA21, ..., IA" I }. Since A is a real and symmetric matrix, it is
elementary to see IIA-III = l/A.
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Ball [2] recently proved the following interesting result:

THEOREM 1 (Ball). Let XI' X 2, ... , X n be n points in IR d
, where d is an odd

integer. If Ilx; - Xk II ~ c: for al j #- k, then all the eigenvalues of A have
absolute values at least

(
d-l)-1[;2 d . l!!..-!. 'I2 I,h (1)

where I'd is the distance in C[ -1, 1] of the function ix! from the space of
polynomials of degree (d - 1) or less.

Ball [2] asserted that the estimate (1) is best possible for the case d = I
but is not best possible for the case d = 3. Ball also conjectured that the
estimate is not best possible for d = 5, 7, 9, ....

An estimate was given by Narcowich and Wartd [5] for the more
general matrix

0< Ct < 2.

Nevertheless, when Ct = 1, and d (~3) is an odd integer, their estimate is
not as sharp as the one given by Ball.

Ball [2] pointed out that it is an interesting geometric problem to deter
mine the best possible constant, at least for d = 2 and 3. In this paper, we
provide an estimate for all dimensions d. Asymptotically, our estimate is
weaker than Ball's; however, it yields bctter results for low dimensions.
And our cstimate is best possible for d = 1.

2. THE ESTIMATE

Let ), I, i. 2 , ... , )." be the eigenvalues of the matrix A = (1Ix; - X k II) in
descending order. By Schoenberg's result mentioned in Section 1, the
following inequalities are true:

Since the trace of A is 0, we have L.j~1 Aj=O. Hence )'1 =L.j~2 li.J Thus
i' 2 is one of the eigenvalues having the smallest absolute value. By the
Courant Fischer Theorem,

i' 2 = min max v TAI} ~ max vTAu,
dimV~n I v~V.livl~1 vru~O.II"I'~1
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where u is the vector (1,1, ..., 1)T. Formula (5) allows us to use Fourier
transform techniques to estimate the quadratic form vTAv for vTu = O.
A similar method has been used by Narcowich and Ward [4].

DEFINITION 2. The Fourier transform of a function f in L l([Rd) is the
function J defined by

J(t) = (2n)-dI2 f e-iX1f(x) dx.
Rd

The inverse Fourier transform of f is the function 1 defined by

J(t) = (2n)-dI2 f eiX1f(x) dx.
Rd

We also use the symbol ffP(f) to denote the Fourier transform of f, and
the symbol ffP-1(f) to denote the inverse Fourier transform of f It is wen
known that if both f and ffP(f) belong to L l([Rd) then f = ffP -l(ffP(f); see
Rudin [7].

LEMMA 3. Let

if Ilxil ~ 1/2
otherwise.

Then, B1 is radial and

r= Ilxll,

where J v is the Bessel function of the first kind.

Proof The Lemma is trivial in the case d= 1. So we assume that d~ 2.
Since B 1 is radial, so is B1 [9, p. 135]. By Theorem 3.3 in [9, p. 155], we
have

1
1/2

B (x) = r-(d-2)/2 r dl2J (rr) dT:
1 (d-2)/2 '

o

A change of variable p = rr in this integral leads to

r= Ilxll.

r= Ilxll. (2)
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The following formula for Bessel functions can be found In Watson
[to, p.45]

Hence

.f>

zVJ,.(Z) 1:= I z'J v I(z)dz.
'(J

(3)

Applying Eq. (3) to the integral in Eq. (2) with v = d/2, a = 0, h = r/2,
we get

rl2r· pd/2J(d 2)/2(P) dp = (r/2)d/2 Jd/2 (r/2).
'0

It follows that

LEMMA 4. Let B I he as in Lemma 3, and let

B2(x) = (B I * Bd(x) = (2n) d/2 I BI(x - y) dy.
• tv;1 '" 1/2

Then the following results are true:

1. B2(0)=2(2-3d)/2/dr(d/2).

2. supp(B2 ) = {x: [[xII ~ I}.

3. B2(x) = (2 Ilxl )-d J~/2( Ilxll/2). Consequently, B2 E L 1([Rd).

Proof To prove Part 1, using polar coordinates, we write

B2(0)=(2n)-d/2 r B I (-y)dy=(2n),d/2 r I dy
'I,YI '" 1/2 '1)'1'" 1/2

. 2nd/2 2(2 - 3d)/2
= (2n)-d,,2' d2"r(d/2) dr(d/2)'

Part 2 is obvious.
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To prove Part 3, we recall that the Fourier transform maps the convolu
tion B 1 * B 1 to the product B1 .B1 ; see Rudin [7, Theorem 7.2, p.167]. By
Lemma3 and the definition of B2 , we have B2(x)=(2Iixll)-dJ 2

We observe that B2 is finite at the origin and that

IB2(x)! :( (1 + b) ~ 2d Ilxll- Cd + 1)
n

for Ilxll large, where 15 is a positive constant; see Stein and Weiss
p.158]. It follows that B2 EL 1

([Rd). I

We remark here that since B 2 is radial we have %(B2 ) = % -1(B2 )·

Therefore %(B2 ) = % -1(B2 ) = B 2 •

Let Sd-l denote the unit sphere in [Rd. Let Q d denote the Fourier
transform of the rotational invariant probability measure on Sd-l, that

Q (x) = w- 1 f e ixw dw.d d-l "
Sd~l

where dw denotes the usual measure on Sd _ 1 and wd _ 1 the area of Sd - I'

Q d is radial and can be expressed in terms of the Bessel function; see

The following lemma concerns the integral representation of the function
Ilxll~ (0<0:<2) by the function Qd'

LEMMA 5. Let 0 < 0: < 2. Then the following identity is true:

21+~r((a +d)j2) 00

Ilxll~= F(-aj2)F(dj2) fa r-(I+~)[QArllxll)-l]dr.

Proof Observe that Q d is real, bounded in absolute value by 1, and the
function QAr) -1 has a zero of order 2 at the origin, so the integrand
the above representation is absolutely integrable. Hence, using dilation
invariance, we see that there exists a constant c, such that

!lx!I~=c fOO r-(I+~)[QAr IIxll)-l] dr.
o

What remains in the proof is to verify that the constant is correct. To do

640/70/3-6



344 XINGPING SUN

this, integrate both sides against the function (2n) -d/2 e -lIxIl
2
/2 over /Rd. On

the left hand side, we have

(2n)-d/2 td Ilxll'" e-llxI12/2 dx= (;~)d~2 L'" t",+d-Ie-t
2
/2 dt

2"'/2r«a + d)/2)

r(dI2)

On the right hand side, we have

(2n)-d/2 f e-lIxI12/2 {c foo r-(1+"')[QAr Ilxll) -1] dr} dx
n;!d 0

cr(l - a12)
a2"'/2

Here we used the fact that the function e -llxIl
2
/2 is invariant under the

Fourier transform. Thus we have

21 +"'T«a + d)/2)
c = T( -aI2) T(dI2)· I

THEOREM 6. Let XI' X2' ... , X n E /Rd with min}# Ilx} - xkll = 8 > o. Then
all the eigenvalues of the matrix A = (1Ix} - xkll) have absolute values at least

BT«d+ 1)/2)

fi dA dT(dI2) ,

where A d = sUPr;;'O[rJ~/2(r)].

Proof We first explain that we may assume B = 1 without loss of
generality. Indeed, let xi = B -IX}. We then have

min II xi - xicll = tpin B-
1 Ilx} - xkll = 1.

}#k· }#k
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(r > 0).

If )'l, ...,An are the eigenvalues of the matrix A'=(llxi-Xkll), then
£AI' ..., BAn are the eigenvalues of the matrix A = (1lxj - xkll).

Using Lemma 5 with a = 1, we have

where Ll d:= - 2r((d + 1)/2)/r( 1/2).
Let vElR n

, vTu=O. We have

= LldWd~ 1 fOO r- 2[f ± VjVkeir(Xj-Xk)W dW] dr
o Sd-l j. k ~ 1

=LldWd~1 fOO r- 2[f I±VjeiX)'WI2dW]dr
o Sd-l j~ 1

=LldW:~1 f d I ±Vjeix)'wI21Itll~(d+l)dt.
n;j j= I

For all r?:: 0, by the definition of the number Ad, we have rJ~/2(r) ~ Ad'
Consequently, rJ~/2(rI2) ~ 2A d. Hence

rJ~/2(rI2) ~ 2A d
rd+ I '" rd+ 1

Since Ll d is a negative constant, it follows that

where the function B 2 is defined as in Lemma 4.
By Lemma 4 and the remark following it, we have
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n

vTAv~2d(2n)d/2 Lld(2wd_lAd)-1 L Vj vk B2(llxj - X kll)·
j, k~ 1

Finally, because min j# Ilx) - xkll = 1, and sup(B2) = {x: Ilxll ~ 1}, we
obtain

n

vTAv~ [2d(2n)d/2 LlA2wd_ 1Ad)-1 B2(O)] L vj.
)~ 1

= _ r((d+ 1)/2) f v2.

~dAdr(dI2) )=1 }

According to the remarks at the beginning of this section, we see that the
proof is completed by an application of the Courant-Fischer Theorem. I

The estimate given by Theorem 6 holds for all dimension d. When d = 1,
we have (see [10, p. 54])

J 1/2(Z)= (2 sinz.'1/;;
Thus Al = 21n and estimate (3) gives e12. The author was informed by
B. J. C. Baxter that he and M. Powell had verified that the estimate el2 is
best possible for the case d= 1. When d= 3, we have (see [10, p.54])

(2 (SinZ )J 3/iz ) = '<1;; -z--cosz .

Numerical experiment suggests that A 3 < 2Aln, and estimate (3) gives a
bound which is greater than 813.6, and which is better than the one given
by Theorem 1 where the bound is given to be e14. And this confirms Ball's
assertion that el4 is not best possible. However, according to Formula 9.3.5
in [1], Jm(m) is of the order m- 1

/
3 so that our estimate is of the order

ed- 5
/
6 asymptotically, thus, our estimate is weaker than the one given by

Theorem 1 for d sufficiently large.
It would be interesting to determine if the estimate given by Theorem 6

is best possible for d = 2, 3. The problem seems to be related to sphere
packings in jRd. We caution that the sphere packing problem in jRd has not
been settled for d~ 3.
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